
Security Assessment

MetaElfLand
May 15th, 2022



Table of Contents
Summary

Overview

Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings

NFT-01 : Secondary Authorization

NFT-02 : Unsound Value for `idToIndex[_tokenId]`

NFT-03 : Dirty Data

SSC-01 : Centralization Related Risks

SSC-02 : Improper Usage of `public` and `external` Type

SSC-03 : Missing Emit Events

SSC-04 : Unlocked Compiler Version

SSS-01 : No Upper Limit for `_fee`

SSS-02 : Missing Input Validation

SSS-03 : Potential Reentrancy Attack

SSS-04 : Variables Never Used Can Be Removed

SSS-05 : Missing Error Messages

SSS-06 : Variables That Could Be Declared as `constant`

TSS-01 : Initial Token Distribution

TSS-02 : Too Many Digits

TSS-03 : Dead Code

Appendix

Disclaimer

About

MetaElfLand Security AssessmentMetaElfLand Security Assessment



Summary
This report has been prepared for MetaElfLand to discover issues and vulnerabilities in the source

code of the MetaElfLand project as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Static

Analysis and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry

standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts

produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We

recommend addressing these findings to ensure a high level of security standards and industry

practices. We suggest recommendations that could better serve the project from the security

perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are

verified in public;

Provide more transparency on privileged activities once the protocol is live.

MetaElfLand Security Assessment



Overview

Project Summary

Project Name MetaElfLand

Platform Ethereum

Language Solidity

Codebase https://github.com/MetaElfland/SolidityCore

Commit 7bfcd488a7a173fc6053d37e8d918a554f9d0770

Audit Summary

Delivery Date May 15, 2022 UTC

Audit Methodology Static Analysis, Manual Review

Vulnerability Summary

Vulnerability

Level
Total Pending Declined Acknowledged Mitigated Partially Resolved Resolved

Critical 0 0 0 0 0 0 0

Major 2 0 0 2 0 0 0

Medium 1 0 0 0 0 0 1

Minor 2 0 0 0 0 0 2

Informational 11 0 0 4 0 1 6

Discussion 0 0 0 0 0 0 0

MetaElfLand Security Assessment

https://github.com/MetaElfland/SolidityCore


Audit Scope

ID File SHA256 Checksum

TSS Token.sol ac66819bc95d3a4ae71f9b8c6e0058e11f6f278719fe44bc8206b4047e31f79d

NFT NFT.sol fabb3038742c73bf2b064c2383f5f9fec8d41f546c1943f04f6c3befb9d14763

SSS Store.sol 41de53ac6804161322eb9e8d4b7e09083383bb4f98f4385eff9f1d3967905c03

MetaElfLand Security Assessment



Findings

ID Title Category Severity Status

NFT-01 Secondary Authorization Logical Issue Informational Acknowledged

NFT-02
Unsound Value For

idToIndex[_tokenId]
Logical Issue Informational Acknowledged

NFT-03 Dirty Data Logical Issue Informational Acknowledged

SSC-01 Centralization Related Risks
Centralization /

Privilege
Major Acknowledged

SSC-02
Improper Usage Of public  And

external  Type
Gas Optimization Informational Resolved

SSC-03 Missing Emit Events Coding Style Informational Resolved

SSC-04 Unlocked Compiler Version Language Specific Informational Resolved

SSS-01 No Upper Limit For _fee Logical Issue Medium Resolved

SSS-02 Missing Input Validation Volatile Code Minor Resolved

SSS-03 Potential Reentrancy Attack Logical Issue Minor Resolved

SSS-04
Variables Never Used Can Be

Removed
Gas Optimization Informational Resolved

SSS-05 Missing Error Messages Coding Style Informational Partially Resolved

SSS-06
Variables That Could Be Declared As

constant
Gas Optimization Informational Resolved

MetaElfLand Security Assessment

16
Total Issues

Critical 0 (0.00%)

Major 2 (12.50%)

Medium 1 (6.25%)

Minor 2 (12.50%)

Informational 11 (68.75%)

Discussion 0 (0.00%)



ID Title Category Severity Status

TSS-01 Initial Token Distribution
Centralization /

Privilege
Major Acknowledged

TSS-02 Too Many Digits Coding Style Informational Acknowledged

TSS-03 Dead Code Coding Style Informational Resolved

MetaElfLand Security Assessment



NFT-01 | Secondary Authorization

Category Severity Location Status

Logical Issue Informational NFT.sol: 588 Acknowledged

Description

Currently, both the owner  of the tokenId  and the owner's operator can set authorization, but usually,

only the owner  of tokenId  can set authorization.

Recommendation

We advise the client to provide more details about this.

Alleviation

[Team]: In order to facilitate users to use batch operations, this authorized operator has been

added, but we have made restrictions, and only the card can be authorized.

MetaElfLand Security Assessment



NFT-02 | Unsound Value For idToIndex[_tokenId]

Category Severity Location Status

Logical Issue Informational NFT.sol: 884~900 Acknowledged

Description

The start index is 0 when the first NFT is mint, while the index will be set to 0 when burned and the

default index value is also zero.

Recommendation

We advise setting the idToIndex[_tokenId]  as tokens.length  instead of tokens.length-1 .

887887         idToIndex        idToIndex[[_tokenId_tokenId]]  == tokens tokens..lengthlength;;

Alleviation

No alleviation.

MetaElfLand Security Assessment



NFT-03 | Dirty Data

Category Severity Location Status

Logical Issue Informational NFT.sol: 905 Acknowledged

Description

When removing NFT, missing remove idToOwnerIndex[_tokenId] .

Recommendation

We advise removing idToOwnerIndex[_tokenId] .

905905                 uint256uint256 tokenToRemoveIndex  tokenToRemoveIndex == idToOwnerIndex idToOwnerIndex[[_tokenId_tokenId]];;  
906906                 uint256uint256 lastTokenIndex  lastTokenIndex == ownerToIds ownerToIds[[_from_from]]..length length --  11;;  
907907
908908                 ifif  ((lastTokenIndex lastTokenIndex !=!= tokenToRemoveIndex tokenToRemoveIndex)){{  
909909                         uint256uint256 lastToken  lastToken == ownerToIds ownerToIds[[_from_from]][[lastTokenIndexlastTokenIndex]];;  
910910             ownerToIds            ownerToIds[[_from_from]][[tokenToRemoveIndextokenToRemoveIndex]]  == lastToken lastToken;;
911911             idToOwnerIndex            idToOwnerIndex[[lastTokenlastToken]]  == tokenToRemoveIndex tokenToRemoveIndex;;  
912912                 }}  
913913         ownerToIds        ownerToIds[[_from_from]]..poppop(());;  
914914                 deletedelete idToOwnerIndex idToOwnerIndex[[_tokenId_tokenId]];;

Alleviation

No alleviation.

MetaElfLand Security Assessment



SSC-01 | Centralization Related Risks

Category Severity Location Status

Centralization / Privilege Major NFT.sol; Store.sol; Token.sol Acknowledged

Description

In the contract MetaElfLand , the role owner  has authority over the following functions:

function mint()

function renounceOwnership()

function transferOwnership()

In the contract zNFTCONTRACT , the role manager  has authority over the following functions:

function mint() will mint NFT to anyone.

function burn(() will burn anyone's NFT.

function setStarall1()

function setStarall2()

function setStarall3()

function setStarall4()

function setStarall5()

function setStarall6()

In the contract zNFTCONTRACT , the role owner  has authority over the following functions:

function addManager()

function delManager()

function transferOwnership()

In the contract Consignment , the role governance  has authority over the following functions:

function setGovernance()

function setFee()

function withdraw()

function setNFTAddr()

Any compromise to these accounts may allow a hacker to take advantage of this authority.

Recommendation

MetaElfLand Security Assessment



The risk describes the current project design and potentially makes iterations to improve in the

security operation and level of decentralization, which in most cases cannot be resolved entirely at

the present stage. We advise the client to carefully manage the privileged account's private key to

avoid any potential risks of being hacked. In general, we strongly recommend centralized privileges

or roles in the protocol be improved via a decentralized mechanism or smart-contract-based

accounts with enhanced security practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a

different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and

avoiding a single point of key management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations; 

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure

due to the private key compromised; 

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses

information with the public audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations; 

AND

Introduction of a DAO/governance/voting module to increase transparency and user

involvement; 

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO

information with the public audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles; 

OR

Remove the risky functionality.

MetaElfLand Security Assessment



Alleviation

[Team]: We will delete MINT and give up the administrator authority. After NFT gamification, the

NFT attribute is involved in the chain, so there is an administrator authority to manage the

attribute. For the convenience of management, a secondary administrator authority is added. The

mall contract administrator sets the transaction fee management We will transfer the permissions

to the multi-signature wallet.

MetaElfLand Security Assessment



SSC-02 | Improper Usage Of public And external Type

Category Severity Location Status

Gas

Optimization
Informational

NFT.sol: 397, 401, 404, 516, 611, 954, 957; Token.sol: 316, 325, 4

65, 484, 497, 505; Store.sol: 35, 312, 321, 704, 708, 736, 756
Resolved

Description

public  functions that are never called by the contract could be declared as external . external

functions are more efficient than public  functions.

Recommendation

Consider using the external attribute for public functions that are never called within the contract.

Alleviation

The development team resolved this issue in commit 609452f2784c1924009b6d532cff7cee48159398 .

MetaElfLand Security Assessment



SSC-03 | Missing Emit Events

Category Severity Location Status

Coding

Style
Informational

NFT.sol: 397, 401, 963, 980, 995, 1010, 1025, 1040; Token.sol: 325, 4

97; Store.sol: 704, 756
Resolved

Description

There should always be events emitted in the sensitive functions that are controlled by

centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization

roles.

Alleviation

The development team resolved this issue in commit 609452f2784c1924009b6d532cff7cee48159398 .

MetaElfLand Security Assessment



SSC-04 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational NFT.sol; Store.sol Resolved

Description

The contract has unlocked compiler version. An unlocked compiler version in the source code of

the contract permits the user to compile it at or above a particular version. This, in turn, leads to

differences in the generated bytecode between compilations due to differing compiler version

numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in

the codebase that would be hard to identify over a span of multiple compiler versions rather than a

specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the

contract can be compiled at. For example, for version v0.5.8  the contract should contain the

following line:

pragma solidity 0.5.8;pragma solidity 0.5.8;

Alleviation

The development team resolved this issue in commit 609452f2784c1924009b6d532cff7cee48159398 .

MetaElfLand Security Assessment



SSS-01 | No Upper Limit For _fee

Category Severity Location Status

Logical Issue Medium Store.sol: 704 Resolved

Description

In the current implementation, there is no upper limit for the fee rate. Misuse of these fee setting

functions could damage the whole tokenomics. For example, the owner can set the fee rate to more

than 100% to cause all transactions to revert.

Recommendation

We recommend setting a reasonable upper limit of _fee  such as 1000. (10%)

Alleviation

The development team has set the upper limit of _fee  as 10000 (100%) in commit

609452f2784c1924009b6d532cff7cee48159398 .

MetaElfLand Security Assessment



SSS-02 | Missing Input Validation

Category Severity Location Status

Volatile Code Minor Store.sol: 624, 756 Resolved

Description

The given input is missing the check for the non-zero address.

Recommendation

We advise adding the check for the passed-in values to prevent unexpected error as below:

        constructorconstructor((addressaddress _nftaddr _nftaddr))  publicpublic  {{  
                requirerequire((_nftaddr _nftaddr !=!=  addressaddress((00)),,  "_nftaddr is the zero address""_nftaddr is the zero address"));;  
        nftAddr         nftAddr == _nftaddr _nftaddr;;  
        }}  

        functionfunction  setNFTAddrsetNFTAddr((addressaddress newnftaddr newnftaddr))  publicpublic onlyGovernance onlyGovernance{{  
                requirerequire((newnftaddr newnftaddr !=!=  addressaddress((00)),,  "newnftaddr is the zero address""newnftaddr is the zero address"));;  
        nftAddr         nftAddr == newnftaddr newnftaddr;;  
        }}

Alleviation

The development team resolved this issue in commit 609452f2784c1924009b6d532cff7cee48159398 .

MetaElfLand Security Assessment



SSS-03 | Potential Reentrancy Attack

Category Severity Location Status

Logical Issue Minor Store.sol: 628, 649, 673 Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to

another untrusted contract before resolving any effects. If the attacker can control the untrusted

contract, they can make a recursive call back to the original function, repeating interactions that

would have otherwise not run after the external call resolved the effects.

function sell(uint _tokenid,uint _price)

function cancelSell(uint _tokenid)

function buy(uint _tokenid)

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown

contracts or applying OpenZeppelin ReentrancyGuard library - nonReentrant  modifier for the

aforementioned functions to prevent reentrancy attack.

Alleviation

The development team resolved this issue in commit 609452f2784c1924009b6d532cff7cee48159398 .

MetaElfLand Security Assessment

https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol


SSS-04 | Variables Never Used Can Be Removed

Category Severity Location Status

Gas Optimization Informational Store.sol: 610~614 Resolved

Description

These variables _nftTypeInfo/_nftNameInfo/_nftURLInfo/_nftBrandInfo/_nftNumberingInfo  are never

used.

Recommendation

We advise the client to remove these unused variables.

Alleviation

The development team resolved this issue in commit 609452f2784c1924009b6d532cff7cee48159398 .

MetaElfLand Security Assessment



SSS-05 | Missing Error Messages

Category Severity Location Status

Coding Style Informational Store.sol: 629, 630, 650, 651 Partially Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met.

It is better to provide a string message containing details about the error that will be passed back

to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

The development team partially resolved this issue in commit

609452f2784c1924009b6d532cff7cee48159398 .

MetaElfLand Security Assessment



SSS-06 | Variables That Could Be Declared As constant

Category Severity Location Status

Gas Optimization Informational Store.sol: 617, 621 Resolved

Description

The linked variables could be declared as constant  since these state variables are never modified.

Recommendation

We recommend to declare these variables as constant .

Alleviation

The development team resolved this issue in commit 609452f2784c1924009b6d532cff7cee48159398 .

MetaElfLand Security Assessment



TSS-01 | Initial Token Distribution

Category Severity Location Status

Centralization / Privilege Major Token.sol: 356 Acknowledged

Description

All of the MELT  tokens are sent to the contract deployer when deploying the contract. This could be

a centralization risk as the deployer can distribute all tokens without obtaining the consensus of the

community.

Recommendation

We recommend the team to be transparent regarding the initial token distribution process, and the

team shall make enough efforts to restrict the access of the private key.

Alleviation

[Team]: Tokens will be directly transferred to the corresponding multi-signature permission wallet

and mining contract.

MetaElfLand Security Assessment



TSS-02 | Too Many Digits

Category Severity Location Status

Coding Style Informational Token.sol: 355 Acknowledged

Description

Literals with many digits are difficult to read and review.

File: Solidity/Token.sol (Line 355, Function MetaElfLand.constructor )

    _totalSupply     _totalSupply ==  10000000001000000000**1e81e8;;

Recommendation

We advise the client to use the scientific notation to improve readability.

Alleviation

No alleviation.

MetaElfLand Security Assessment



TSS-03 | Dead Code

Category Severity Location Status

Coding Style Informational Token.sol: 596~599 Resolved

Description

The internal function _burnFrom  is not used.

Recommendation

We recommend removing the unused function.

Alleviation

The development team resolved this issue in commit 609452f2784c1924009b6d532cff7cee48159398 .

MetaElfLand Security Assessment



Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components

that act against the nature of decentralization, such as explicit ownership or specialized access roles

in combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on

how block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

that may result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash

Algorithm 2 with digest size of 256 bits) digest of the content of each file hosted in the listed

source repository under the specified commit.

MetaElfLand Security Assessment



The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum"

command against the target file.

MetaElfLand Security Assessment



Disclaimer
This report is subject to the terms and conditions (including without limitation, description of

services, confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or

the scope of services, and terms and conditions provided to you (“Customer” or the

“Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted

under the terms and conditions set forth in the Agreement. This report may not be transmitted,

disclosed, referred to or relied upon by any person for any purposes, nor may copies be delivered

to any other person other than the Company, without CertiK’s prior written consent in each

instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any

particular project or team. This report is not, nor should be considered, an indication of the

economics or value of any “product” or “asset” created by any team or project that contracts

CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any

indication of the technologies proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement

with any particular project. This report in no way provides investment advice, nor should be

leveraged as investment advice of any sort. This report represents an extensive assessing process

intending to help our customers increase the quality of their code while reducing the high level of

risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s

position is that each company and individual are responsible for their own due diligence and

continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of

variance associated with utilizing new and consistently changing technologies, and in no way claims

any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services,

reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.

Cryptographic tokens are emergent technologies and carry with them high levels of technical risk

and uncertainty. The assessment reports could include false positives, false negatives, and other

unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

MetaElfLand Security Assessment



ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT

REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE

THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY

INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER

SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE.

WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING,

AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER

SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET

ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES

ANY REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR

WARRANTY OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN

CUSTOMER AND THE THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

MetaElfLand Security Assessment



NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY

OR OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES

OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

MetaElfLand Security Assessment



About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and

Columbia University, CertiK is a leading blockchain security company that serves to verify the

security and correctness of smart contracts and blockchain-based protocols. Through the utilization

of our world-class technical expertise, alongside our proprietary, innovative tech, we’re able to

support the success of our clients with best-in-class security, all whilst realizing our overarching

vision; provable trust for all throughout all facets of blockchain.

MetaElfLand Security Assessment


